加盟全球连锁品牌网,项目放心!
首页 > 娱乐圈事 > 导数表(数学里面的学科名词)
* 您的地区: * 您的称呼: * 您的电话: * 填验证码: 您的留言:
同意并提交

点击提交代表您同意《用户协议》《隐私政策》

导数表(数学里面的学科名词)

更新于2023-08-05

对于双曲函数shx,chx,thx等以及反双曲函数arshx,archx,arthx等和其他较复杂的复合函数求导时通过查阅导数表和运用开头的公式与4.y=u土v,y'=u'土v'5.y=uv,y=u'v+uv'均能较快捷地求得结果。显而易见,y=c是一条平行于x轴的直线,所以处处的切线都是平行于x的,故斜率为0。用导数的定义做也是一样的:y=c,⊿y=c-c=0,lim⊿x→0⊿y/⊿x=0。

中文名

导数表

外文名

derivative table

适用领域

代数

所属学科

数学

常用公式

y=f[g(x)],y'=f'[g(x)]·g'(x)『f'[g(x)]中g(x)

导数表

1.y=c(c为常数)y'=0

2.y=x^ny'=nx^(n-1

3.y=a^xy'=a^xlna

  y=e^xy'=e^x

4.y=logaxy'=logae/x

  y=lnxy'=1/x

5.y=sinxy'=cosx

6.y=cosxy'=-sinx

7.y=tanxy'=1/cos^2x

8.y=cotxy'=-1/sin^2x

9.y=arcsinxy'=1/√1-x^2

10.y=arccosxy'=-1/√1-x^2

11.y=arctanxy'=1/1+x^2

12.y=arccotxy'=-1/1+x^2

推导依据

在推导的过程中有这几个常见的公式需要用到:

  1. 链式法则:  ,则  (f'[g(x)]中g(x) 看作整个变量,而g'(x) 中把x看作变量)。
  2. ,则 (一般的莱布尼茨公式)。
  3.  ,则  。
  4. 反函数求导法则:y=f(x) 的反函数是x=g(y) ,则有  (可由导数及微分的定义直接推得)。

推导过程

1.显而易见,y=c是一条平行于x轴的直线,所以处处的切线都是平行于x的,故斜率为0。用导数的定义做也是一样的:y=c,△y=c-c=0,lim△x→0△y/△x=0。

2.这个的推导暂且不证,因为如果根据导数的定义来推导的话就不能推广到n为任意实数的一般情况。在得到 y=e^x y'=e^x和y=lnx y'=1/x这两个结果后能用复合函数的求导给予证明。[2]

3.y=a^x,△y=a^(x+△x)-a^x=a^x(a^△x-1)△y/△x=a^x(a^△x-1)/△x如果直接令△x→0,是不能导出导函数的,必须设一个辅助的函数β=a^△x-1通过换元进行计算。由设的辅助函数可以知道:△x=loga(1+β)。所以(a^△x-1)/△x=β/loga(1+β)=1/loga(1+β)^1/β显然,当△x→0时,β也是趋向于0的。而limβ→0(1+β)^1/β=e,所以limβ→01/loga(1+β)^1/β=1/logae=lna。把这个结果代入lim△x→0△y/△x=lim△x→0a^x(a^△x-1)/△x后得到lim△x→0△y/△x=a^xlna。可以知道,当a=e时有y=e^x y'=e^x。

4.y=logax△y=loga(x+△x)-logax=loga(x+△x)/x=loga[(1+△x/x)^x]/x△y/△x=loga[(1+△x/x)^(x/△x)]/x因为当△x→0时,△x/x趋向于0而x/△x趋向于∞,所以lim△x→0loga(1+△x/x)^(x/△x)=logae,所以有lim△x→0△y/△x=logae/x。可以知道,当a=e时有y=lnx y'=1/x。这时可以进行y=x^n y'=nx^(n-1)的推导了。因为y=x^n,所以y=e^ln(x^n)=e^nlnx,所以y'=e^nlnx·(nlnx)'=x^n·n/x=nx^(n-1)。

5.y=sinx△y=sin(x+△x)-sinx=2cos(x+△x/2)sin(△x/2)△y/△x=2cos(x+△x/2)sin(△x/2)/△x=cos(x+△x/2)sin(△x/2)/(△x/2)所以lim△x→0△y/△x=lim△x→0cos(x+△x/2)·lim△x→0sin(△x/2)/(△x/2)=cosx

6.类似地,可以导出y=cosx y'=-sinx。

7.,则

8.,则

9.,则

10.,则

11.,则

12.,则

14.,则

15.,则

16.,则

17.联立:①(ln(u^v))'=(v * lnu)'②(ln(u^v))'=ln'(u^v) * (u^v)'=(u^v)' / (u^v)

另外在对双曲函数shx,chx,thx等以及反双曲函数arshx,archx,arthx等和其他较复杂的复合函数求导时通过查阅导数表和运用开头的公式与y=u土v,y'=u'土v',y=uv,y=u'v+uv'均能较快捷地求得结果。 

全球连锁品牌网温馨提示

  • 以上展示的项目信息均来自项目公开数据,内容的真实性、准确性和合法性由来源网站负责。
  • 投资有风险,选择需谨慎。本页面内容仅供参考,建议您在投资前与企业核实确认加盟情况,务必多咨询、多考察,以企业确认为准,以便降低投资风险。
  • 全球连锁品牌网仅进行信息展示,如您发现页面有任何违法或侵权信息,请联系我们,我们会及时核查处理并回复。